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The selective catalytic oxidation of alkanes using inexpensive
and environmentally friendly oxidants is of immense interest to
the chemical community and of great potential benefit to the world
economy and ecology. Since the earliest reports that the oxidative
addition of alkane C-H bonds to transition metal species can
occur with high selectivities, substantial research effort has
focused on the functionalization of the metal alkyl hydride
products.1 For the development of a commercially viable oxidation
process, the use of a clean and cheap oxidant such as air (oxygen)
is desirable.2 Some of the most promising homogeneously
catalyzed alkane oxidation reactions reported have been based
on platinum.1c,d,3 Unfortunately, these systems are hampered by
the use of expensive and less favorable oxidants. Some Pt(II)
complexes, recently including ones with alkyl ligands, have been
observed to undergo reaction with dioxygen to form Pt(IV)
complexes.4 Such reactivity of Pt(II) may find utility in platinum-
catalyzed alkane oxidation reactions. In this contribution, we
report that aPt(IV) dialkyl hydride complex reacts cleanly with
dioxygen to produce a dialkyl Pt(IV) hydroperoxide species. Of
potential relevance to the development of alkane oxidation systems
is that the Pt(IV) dialkyl hydride reactant is analogous to
compounds formed by intermolecular oxidative addition of alkane
C-H bonds to Pt(II).5 The novel Pt(IV) product has been
crystallographically characterized and displays anη1-hydroper-
oxide linkage. Such examples of structurally characterizedη1-
hydroperoxides are rare,6 despite their proposed involvement in
a variety of metal-mediated biological oxidations.7

The Pt(IV) complex TpMe2PtMe2H (1, TpMe2 ) hydridotris(3,5-
dimethylpyrazolyl)borate)8 formally inserts dioxygen into the
Pt-H bond to produce the hydroperoxo Pt(IV) species, TpMe2-
PtMe2(OOH) (2) (Scheme 1). When a solution of1 in C6D6 was
exposed to dioxygen (∼1 atm) at ambient temperature, complex
2 was generated in quantitative spectroscopic yield.9 The1H NMR
spectrum of2 shows singlets with195Pt satellites atδ 6.01 (3JPt-H

) 12 Hz) andδ 2.16 (2JPt-H ) 72 Hz) which are assigned to the
hydroperoxo proton and the platinum-bound methyl protons,
respectively. The IR spectrum of2 in CH2Cl2 solution (30 mM)
exhibits a sharpνOO-H absorbance at 3533 cm-1. Absorption bands
for the TpMe2 ligand obscure that expected forνO-O (800-900
cm-1).10 Octahedral geometry withκ3-coordination of the TpMe2

at Pt(IV) is supported by theνB-H absorbance at 2556 cm-1 and
a 11B NMR chemical shift of 9.37 ppm.11 The spectroscopic data
are consistent with those for previously reported hydroperoxo
transition metal complexes.6d,12That the source of the hydroperoxo
proton was the hydride ligand of1 was confirmed by1H NMR
monitoring of the reaction of TpMe2PtMe2D (1-d1) with dioxygen;
TpMe2PtMe2(OOD) (2-d1) was produced with 86% of the label
residing in the hydroperoxo proton site.

The molecular structure of2 has also been determined by
single-crystal X-ray diffraction.13 The ORTEP of2‚CH2Cl2 (inset
in Scheme 1)14 displays a rare example of anη1-hydroperoxo
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ligand characterized by X-ray crystallography.6 The Pt-O-O
bond angle is 110.1(3)°. The unit cell contains two molecules of
2 whose-OOH moieties form a six-membered centrosymmetric
ring via hydrogen bonding.15 The intermolecular close contact
distance between dissimilar oxygen atoms (O2-O1′) is 2.698(5)
Å, and the hydrogen bond distance (H2-O1′) is 1.85 Å. The
smallertrans influence of the hydroperoxo ligand of2 compared
to that of the hydride ligand of1 is indicated by the Pt-N bond
length for the unique pyrazolyl ring (2.037(4) Å for2 vs 2.169-
(6) Å for 1).8 This is also reflected in the195Pt-H coupling
constant of the methine proton of the coordinated pyrazolyl ring
trans to -OOH (4JPt-H ) 12 Hz) or-H (4JPt-H ≈ 6 Hz).

Insertions of dioxygen into transition metal hydrides to form
hydroperoxo complexes have been noted for a small number of
organometallic and coordination compounds of Co(III), Rh(III),
Ir(III), and Pt(II).16 Mechanisms of metal deprotonation followed
by oxygen binding and protonation,16d,f and radical chain pathways
involving hydrogen radical abstraction from the metal hydride,16e,g

have both been suggested. Our results as detailed below are more
consistent with the latter.

The reaction of1 in C6D6 with O2 under ambient conditions
of light and temperature for 2 days produced2 in 98% yield
(100% conversion of1).17 A reaction carried out in the dark over
the same 2-day period proceeded to only 14% conversion (100%
yield of 2). In a separate experiment, irradiation for 1 h with high-
intensity ultraviolet light (λ > 345 nm) led to 75% conversion of
1 (90% yield of2).18,19In contrast, as a control experiment, when
a degassed solution of1 (no O2) was irradiated for 1 h, no reaction
was detected. That light promoted the reaction of dioxygen with
1 is strongly suggestive of a radical pathway.

The proposal of a radical mechanism is also supported by
experiments in which the reaction of1 with dioxygen was carried
out in the presence of a radical initiator (AIBN) 2,2′-azobis-
(2-methylpropionitrile)) and a radical inhibitor (1,4-cyclohexa-
diene). In side-by-side experiments, a thermal (50°C) dark
reaction with added initiator (17 mol %) proceeded over a period
of 1 h to 31%conversion of1 (100% yield of2) as compared to
4% conversion of1 (100% yield of2) without AIBN. With added
inhibitor (40 mol %), the reaction of1 and O2 under ambient
light and temperature conditions gave 46% conversion with a 94%
yield of 2 after 2 days.17 This is in contrast to the near-quantitative
conversion under the same conditions but without added 1,4-
cyclohexadiene as described above. These results are consistent
with those expected for a reaction occurring by a radical chain

mechanism. A radical mechanism analogous to that established
for the autoxidation of alkanes can be proposed.20 After an initiator
abstracts a hydrogen atom from the starting Pt(IV)-H complex,
a Pt(III) radical chain carrier would be generated. The Pt(III)
radical reacts with O2 to form a superoxo Pt(IV) species which
can abstract a hydrogen atom from the starting Pt(IV)-H, and
thus the chain is propagated. Additional mechanistic experiments
are in progress.

The hydroperoxo complex2 is stable at ambient tempera-
ture but reacts upon extended thermolysis in solution at 79°C.
Thermolysis of2 in C6D6 led predominantly to formation of the
hydroxo species, TpMe2PtMe2(OH) (3).21 After 1 week at 79°C,
the reaction had proceeded to 46% conversion with a 93% yield
of 3.22 The 1H NMR spectrum of3 in C6D6 shows singlets with
195Pt satellites atδ -1.30 (2JPt-H ) 20 Hz) andδ 2.01 (2JPt-H )
71 Hz) which are assigned to the hydroxo and platinum-bound
methyl protons, respectively. In the IR spectrum of3 in CH2Cl2
solution (30 mM), a sharp band is observed forνO-H at 3604
cm-1. Similar transformations of metal hydroperoxide complexes
to their corresponding hydroxide complexes and O2 have been
reported for cobalt(III) and dicopper(II).23 This reactivity is also
comparable to the decomposition of the organic analogue,tert-
butyl hydroperoxide, which proceeds via a radical pathway to
tert-butyl alcohol and O2.24

A more facile conversion of2 to 3 can be achieved by the
reaction of2 with PMe3 or PPh3, traditional oxygen-atom-acceptor
reagents. These reactions, which were carried out in C6D6 at
ambient temperature, resulted in quantitative spectroscopic yield
of 3 and phosphine oxide within 2 days. Complex3 can also be
prepared directly from1 by reaction with N2O; however, this
reaction proceeded with lower conversion.25

In summary, a novel O2 insertion into a Pt(IV)-hydride bond
has been observed to form a stable Pt(IV) hydroperoxide
compound. This result is especially significant because the reactant
is a Pt(IV) alkyl hydride complex directly analogous to those
which are produced via oxidative addition of alkane C-H bonds.
With the exception of a fluorinated alkyl hydride species,16g this
is the first report of a transition metal alkyl hydride reacting with
oxygen to cleanly generate a hydroperoxide product. This unusual
reactivity of a high-valent metal alkyl hydride species with oxygen
is promising for the development of commercially viable homo-
geneous catalytic alkane oxidation. We are continuing our studies
of this unique reactivity in this and related systems.
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